Industry 4.0: Industrial IoT Enhancement and WSN Performance Analysis

Doctoral Program in Control and Computer Engineering (33.th cycle) Torino, 2021/09/16

Candidate: Mohammad Ghazi Vakili

Supervisor: Prof. Claudio Giovanni Demartini

Committee

Prof. Paulo Portugal, Referee, University of Porto (PT) Prof. Davide Quaglia, Referee, University of Verona (IT) Dr. Luca Durante, Senior Researcher at CNR-IEIIT (IT) Prof. Bartolomeo Montrucchio, Politecnico di Torino (IT) Prof. Lucia Lo Bello, University of Catania (IT)

Politecnico di Torino

Premise

Agenda

Outline

Motivation

Problem Statement

Sustainable communication intra, inter Shopfloor & Business devices and applications

Sustainable Communication

Motivation

Industry 4.0 challenges

Communication challenges

IoT standardization

WSN Modeling

Prerequisites in Industry 4.0 communication

Defining communication structures

Development of a common language with its own signs, alphabet, vocabulary, syntax, grammar, semantics, pragmatics and culture

> The Road map: RAMI 4.0 – The Reference Architectural Model for Industrie 4.0

What is RAMI4.0?

- RAMI 4.0 is a three-dimensional map showing how to approach the issue of Industrie 4.0 in a structured manner.
- RAMI 4.0 ensures that all participants involved in Industrie 4.0 discussions understand each other.
- RAMI 4.0 is a SERVICE-ORIENTED ARCHITECTURE.
- RAMI 4.0 combines all elements and IT components in a layer and life cycle model.
- RAMI 4.0 breaks down complex processes into easy-to-grasp packages, including data privacy and IT security.

Challenges

Proposed solutions

Solutions for Industry 4.0 communication issues

Solutions for Industry 4.0 communication issues

OPC-IoT Platform

Industrial IoT Platform Based on RAMI 4.0

redis Business Functional Information Layers Communication Integration Connected World Asset Enterprise Work Units TYPE Station INSTANCE Hierarchy Levels (EC62264) (EC61512 (SA95 MES model / ISA88 Batch model Control Device Field Device Value Stream IEC62890 Product Lifecycle Management CoAP

Industrial IoT Platform Based on RAMI 4.0

DIIG-OPC architecture components with the IoT platform

DIIG-Kaa architecture components with Kaa IoT platform

Performance evaluation: Throughput

Result of 100,000 messages that were sent to the server from each client, and the data were stored in various database technologies

OPC-IoT platform

OPC-IoT platform

IoT adoption Standardization Performance analysis

Solutions for Industry 4.0 communication issues

605h.0

IFog4.0

IFog4.0

Proposed solution

IFog4.0 IoT integration Low latency Data privacy **High Security** On-Demand installation Application Data flow support Fast deployments Open source Follow the RAMI4.0 Supporting various Industrial Protocols (ProfiNet, Modbus, OPC-UA)

PLC 1

Web

browser

IFog4.0

Ζŏ

116

Water Bath Heater

Shell and Tube Heat

113

114

IFog 4.0: Data visualization

Solutions for Industry 4.0 communication issues

TSCH WSN Model

TSCH WSN

Modeling of the TSCH WSN against Wi-Fi

Testbed setup

Mathematical model derived from latency

IEEEÁccespierforteefaceess

TABLE 4. Experimental results about the influences of the influences of the second and the secon

-	Nstot Nsbat	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ariation N _{slot}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

TABLE5. Experimental results about the influence of the second second

Performance evaluation

Deployment issue
Performance
analysis

, L

Configuration			Latency					Reliability			Power Consumption			
Condition	N_{slot}	N_{tries}	d_{min}	μ_d	σ_{d}	$d_{ m p99}$	d_{max}	Max_d	P_{lost}	ϵ	$1 - \epsilon_{pkt}$	f_{tra}	f_{listen}	P
					[s]			[s]				$[\cdot 10^{-5}]$	$[\cdot 10^{-4}]$	$\mu { m W}$
Default	101	16	0.528	2.115	1.310	6.579	11.049	64.640	0.0	0.125	14-nines	1.91	9.71	144.4
High Reliability	101	24	1.470	3.090	1.320	7.450	9.360	96.960	0.0	0.132	20-nines	1.92	9.71	144.5
Low Latency	11	3	0.159	0.336	0.135	0.780	1.023	1.320	0.0042	0.142	0.9942	1.92	90.71	1262.4
Low Power Cons.	201	16	2.565	5.535	2.461	13.637	22.366	128.640	0.0	0.112	14-nines	1.92	4.78	76.5
Default (15-days)	101	16	0.522	2.114	1.289	6.393	12.382	64.640	0.0	0.126	14-nines	1.90	9.71	144.5

I L

37

Solutions for Industry 4.0 communication issues

TSCH Predictor

TSCH predictor

TSCH predictor Software Architecture

Performance evaluation TSCH Conf. Reliability Latency Power Consumption N_{slot} N_{tries} dimax Atra Maxe Plant Itisten dmin - Cald 14 <u>ii.</u> Itra 100 Juisten (#) $[\mu W]$ -10 -10^{-4} -10 8 10Real data with Openmote B 2.32 0.338 1.320 11 3 0.159 0.335 0.134 1.0230.4166 0.1428 0.9941 1.9390.71262.4990.710.7801.94 16 9.71101 12.382 2.29 2.12 0.12631.91 9.71144.494 0.522 2.117 287 - 6.39864.640 0 1.91101 24 3.0899.362.31 0.13231.929.71144.5541.929.711.47 1.327.453.1096.96 0 20116 46 13.637 22.366 2.25 0.11251.924.7876.5805 4.79 2.5655.60128.641.87white property and the second -4

	Summation with TSCH predictor																
11	3	0.160	0.329	0.142	0.780	1.240	2.31	0.339	1320	0.5761	0.1435	0.9940	1.93	90.7	1262.53	1.93	90.71
101	16	0.520	2.105	1.307	6.420	14.500	2.29	2.12	64.640	0	0.1266	1	1.91	9.71	144.496	1.91	9.71
101	24	1.46	3.078	1.334	7.440	18.400	2.31	3.09	96.96	0	0.1327	1	1.92	9.71	144.551	1.92	9.71
201	16	2.58	5.581	2.443	13.98	30.18	2.25	5.61	128.64	0	0.1127	1	1.88	4.79	76.3954	1.88	4.79

TSCH Predictor

Deployment issue Performance analysis

Easy to use

Uses the packet delivery probability.

It could predict performance indicator

Perform longer experiment with no limitation

Easy to change the network parameters

Conclusions & Future work

Conclusions

OPC-IoT platform

- Overcomes standardization complexity
- Based RAMI 4.0
- Overcomes compatibility issue
- Analyzing the performance indicator for proposed IoT
- Opensource solution for SME

TSCH WSN Model

- Analyzes behavior of single and multi hop topologies
- Proposes model to predict TSCH WSN performance indicator
- Proposes method to config/set up fast and easier TSCH network for SME
- Proposes method to choose the network parameter with requested indicator

IFog 4.0

- Overcomes centralization complexity/issues
- Latency issue
- Privacy/Data ownership
- Fast deployment
- Opensource solution for SME

TSCH Predictor

- Overcomes simulation complexity for SME
- Easy to perform long experiments
- Predicts performance indicator
- Proposes the Web interface beside the command line interface

Future work

- Working on the extension of the TSCH Predictor and developing new futures.
- Proposing automated technic to select a best network parameters based on the background traffic
- Developing the optimization technic for WSN parameter selection.
- Performing more realistic experiments with IFog4.0
- Analyze the performance indicator for IFog4.0
- Developing MQTT solution for IoT platform and compare it with OPC-UA

••• THANKS

It is a question time!

mohammad.ghazivakili@polito.it

www.ghazivakili.com

Thank you

Thank you so much for your time

Backup Slide

Appendix A: Journal Paper

- Evaluating and Modeling IEEE 802.15.4 TSCH Resilience against Wi-Fi Interference in New-Generation Highly-Dependable Wireless Sensor Networks / Cena, Gianluca; Demartini, Claudio G.; Vakili, Mohammad Ghazi; Scanzio, Stefano; Valenzano, Adriano; Zunino, Claudio. - In: AD HOC NETWORKS. - ISSN 1570-8705. - STAMPA. - 106:102199(2020).
- Wireless Sensor Networks and TSCH: a compromise between Reliability, Power Consumption and Latency / Scanzio, Stefano; Vakili, Mohammad Ghazi; Cena, Gianluca; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo; Valenzano, Adriano; Zunino, Claudio. -In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 8(2020), pp. 167042-167058.
- Quantum Pliers Cutting the Blockchain / Giusto, Edoardo; Ghazi Vakili, Mohammad; Gandino, Filippo; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo. - In: IT PROFESSIONAL. - ISSN 1520-9202. - ELETTRONICO. - 22:6(2020), pp. 90-96.
- A Densely-Deployed, High Sampling Rate, Open-Source Air Pollution Monitoring WSN / Montrucchio, Bartolomeo; Giusto, Edoardo; Ghazi Vakili, Mohammad; Quer, Stefano; Ferrero, Renato; Fornaro, Claudio. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. - ELETTRONICO. - (In corso di stampa).
- A Fuzzy Control System for Energy Efficient Wireless Devices in the Internet of Vehicles / Mario Collotta; Renato Ferrero; Edoardo Giusto; Mohammad Ghazi Vakili; Jacopo Grecuccio; Xiangjie Kong; ; Ilsun You International Journal of Intelligent Systems (Accepted Dec. 7th)

Appendix A: Conferences

- DIIG: A Distributed Industrial IoT Gateway / Masoud, Hemmatpour; Mohammad, Ghazivakili; Bartolomeo, Montrucchio; Maurizio, Rebaudengo. - ELETTRONICO. - 1(2017), pp. 755-759. ((Intervento presentato al convegno Computer Software and Applications Conference (COMPSAC) tenutosi a Torino nel 4-8 June 2017.
- Industrial data-collector by enabling OPC-UA standard for Industry 4.0 / GHAZI VAKILI, Mohammad; Demartini, CLAUDIO GIOVANNI; Zunino, Claudio. - ELETTRONICO. - (2018), pp. 1-8. ((Intervento presentato al convegno 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). 2018
- Open Source Fog Architecture for Industrial IoT Automation Based on Industrial Protocols / Ghazi Vakili, Mohammad; Demartini, Claudio; Guerrera, Mauro; Montrucchio, Bartolomeo. - (2019), pp. 570-578. ((Intervento presentato al convegno IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) Milwaukee, WI, USA, USA.
- Ubiquitous fridge with natural language interaction / Ferrero, Renato; GHAZI VAKILI, Mohammad; Giusto, Edoardo; Guerrera, Mauro; Randazzo, Vincenzo. ELETTRONICO. (2019), pp. 404-409. ((Intervento presentato al convegno 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA) tenutosi a Pisa (Italia) nel 25-27 Settembre 2019.

Appendix A: Datasets

- B. Montrucchio, E. Giusto, M. Ghazi Vakili, S. Quer, R. Ferrero, C. Fornaro, "A Densely-Deployed, High Sampling Rate, Open-Source Air Pollution Mon- itoring WSN", IEEEDataPort, August. 2020, doi: https://dx.doi.org/10.21227/m4pb-g538
- S. Scanzio, M. Ghazi Vakili, G. Cena, C. G. Demartini, B. Montrucchio, A. Valenzano, C. Zunino, "Wireless Sensor Networks Dataset (TSCH a Com- promise Between Reliability, Power Consumption, and Latency)", IEEEDat- aPort, Jan. 2021, doi: https://dx.doi.org/10.21227/fg62-bp39

Appendix B. DIIG: A Distributed Industrial IoT Gateway

• The algorithm for IoT gateways proposes to bridge the traditional industrial network and the new paradigm of the Internet of Things network.

- Read Nodes data on the Profinet and Modbus.
- Change the protocol.
- Then push to the IoT Platform with the customized SDK.

Appendix B. DIIG: A Distributed Industrial IoT Gateway

lloT platform

Industrial IoT Platform Based on RAMI 4.0

- OPC- gateway algorithm
- Adapting DIIG algorithm with OPC-UA protocol
- Exchange data with Profinel protocol
- Based on service oriented protocol
- Easy to adopt with PLCs, no need to install or using any additional middleware

Industrial IoT Platform Based on RAMI 4.0

DIIG gateway Algorithm

Figure 2.2: DIIG gateway algorithm

Industrial IoT Platform Based on RAMI 4.0

- OPC-IoT Server algorithm
- Implemented based on OPC-UA protocol
- Using 3 different No-SQL database
- Generates one dedicated
 Node for each IoT device
- Replies delivery message when each message is recorded in the database

Performance evaluation Fairness

Result of 100,000
 messages that were
 sent to the server from
 each client, and the
 data were stored in
 various database
 technologies

Performance evaluation: Roundtrip

Result of 100,000 messages that were sent to the server from each client, and the data were stored in various database technologies

Latency table

KafKa	S	OPC-IoT	S - 12 - 34	DIIG-KAA					
	min [m.s]	avg [ms]	max ms	min [ms]	avg ms	max [ms]			
One client	0.099	0.120	45.448	N/A	0.151	100			
Two client	0.116	0.351	48.880	N/A	0.291	292			
Four client	0.375	1.231	128.007	N/A	1.098	182			

Table 2.1: Round-trip test in [ms] for KafKa with minimum, maximum, and average values

ManashB		OPC-IoT		DIIG-KAA					
MongoDB	min [m.s]	avg [ms]	max ms	min [ms]	avg ms	max ms			
One client	0.124	0.120	35.771	N/A	0.129	7116			
Two client	0.102	0.236	31.178	N/A	0.320	5075			
Four client	0.084	0.609	23.104	N/A	1.151	13650			

Table 2.2: Round-trip test in [ms] for MongoDB with minimum, maximum, and average values

Latency table

Camandra dh		OPC-IoT	5	DIIG-KAA				
Cassandra do	min [ms]	avg ms	max [mis]	min [ms]	avg [ms]	max [ms]		
One client	0.133	0.119	35.771	N/A	0.145	247		
Two client	0.104	0.255	33.592	N/A	0.278	59		
Four client	0.069	0.579	22.840	N/A	1.300	167		

Table 2.3: Round-trip test in [ms] for Cassandra db with minimum, maximum, and average values

Mix dbs	-	OPC-IoT		DIIG-KAA				
	min [ms]	avg [ms]	max [ms]	min [ms]	avg [ms]	max [ms]		
One client	0.085	0.158	34.966	N/A	0.172	1213		
Two client	0.0875	0.345	58.382	N/A	0.553	36689		
Four client	0.068	1.069	24.540	N/A	1.750	56183		

Table 2.4: Round-trip test in [ms] for Mixed db with minimum, maximum, and average values

IFog 4.0

IFog4.0: Application & Components

IFog4.0: architecture: components and applications

WSN Topologies

6TiSCH Matrices

6TiSCH protocol

WiFi network near to WSN

WiFi spectrum vs IEEE802.15.4

WSN Latency different days

IEEE 802.15.4 vs WiFi Networks

PhyCh = HopSeqList[(ASN + ChOffset)%HopSeqLen]

Channel Hopping in IEEE 802.15.4 Networks

Single Hop Latency

 Single-hop requestresponse transaction in TSCH

Multi Hop Latency

Power-consumption Model

Quantity	Action(s)	Slot offset	$\begin{bmatrix} \text{Energy} \\ [\mu\text{J}] \end{bmatrix}$	Size [bytes]
$E^f_{rx \ data}$	RX DATA frame	16	178	87
$E_{tx \ ack}^{f}$	TX ACK frame	16	106	33
$E_{tx \ data}^{f \ }$	TX DATA frame	98	187	90
$E_{rx \ ack}^{f^{-}}$	RX ACK frame	98	79	33
E_{listen}^{f}	Idle listening	16	138	-
E_{comp}^{f}	Computation	-	628	-
E_{rx}^f	RX DATA + TX ACK	16	284	120
E_{tx}^f	TX DATA + RX ACK	98	266	123

$$P = f_{tra} \cdot \left(E_{tx}^f + E_{rx}^f \right) + f_{listen} \cdot E_{listen}^f$$

TSCH WSN

Power-consumption Model

Powerconsumption Model

$$1 - \epsilon_{pkt} = \left(1 - \epsilon^{N_{tries}}\right)^{N_{hop}}.$$

$$\begin{split} n_{tra,i} &= \left\lfloor \frac{d_i - d_{min}}{T_{sframe}} \right\rfloor + N_{hop}, \\ p_{nr} &= \left(1 - \epsilon\right)^{N_{hop}} = \frac{\left|\{i \mid n_{tra,i} = N_{hop}\}\right|}{N_{sam}}, \end{split} \qquad \epsilon = \left.1 - \left(\frac{\left|\{i \mid n_{tra,i} = N_{hop}\}\right|}{N_{sam}}\right)^{\frac{1}{N_{hop}}}. \end{split}$$

Power-consumption Model

$$E = E_{tx} + E_{rx} + E_{listen} + E_{cpu} + E_{sleep},$$

$$E_{net} = E_{tx} + E_{rx} + E_{listen} = n_{tra} \cdot \left(E_{tx}^f + E_{rx}^f \right) + n_{listen} \cdot E_{listen}^f$$

$$P = f_{tra} \cdot \left(E_{tx}^f + E_{rx}^f \right) + f_{listen} \cdot E_{listen}^f,$$

 $f_{tra} = \frac{N_{tra}}{T_{app} \cdot N_{sam}},$

$$\begin{split} f_{listen} &= \frac{1}{T_{app} \cdot N_{sam}} \cdot \\ &\quad \cdot \left(\frac{N_{hop} \cdot T_{app} \cdot N_{sam}}{T_{sframe}} - N_{tra} \right), \\ f_{listen} &= \frac{N_{hop}}{T_{sframe}} - f_{tra} = \frac{N_{hop}}{T_{slot} \cdot N_{slot}} - f_{tra}. \end{split}$$

$$\begin{split} N_{tra} &= N_{tra}^{deliv} + N_{tra}^{lost}. \\ N_{tra}^{deliv} &= \sum_{i=0}^{N_{sam}} n_{tra,i}. \end{split}$$

$$\hat{N}_{tra}^{lost} &= \hat{N}_{lost} \cdot \sum_{h=0}^{N_{hop}-1} \left[\frac{(1 - \epsilon^{N_{tries}})^h - (1 - \epsilon^{N_{tries}})^{h+1}}{1 - (1 - \epsilon^{N_{tries}})^{N_{hop}}} \right] \cdot \left(h \cdot \left(\frac{1}{1 - \epsilon} - \frac{N_{tries} \cdot \epsilon^{N_{tries}}}{1 - \epsilon^{N_{tries}}} \right) + N_{tries} \right) \end{split}$$

Derived-quantities

$$\hat{N}_{lost} = N_{sam} \cdot \epsilon_{pkt} = N_{sam} \cdot \left(1 - (1 - \epsilon^{N_{tries}})^{N_{hop}}\right).$$

The expected number of transmission attempts performed for a packet correctly delivered on a single hop is described by a truncated geometric series

$$rac{1}{1-\epsilon^{N_{tries}}}\sum_{k=1}^{N_{tries}}k(1-\epsilon)\epsilon^{k-1}.$$

$$\hat{n}_{tra} = N_{hop} \cdot \left(\frac{1}{1 - \epsilon} - \frac{N_{tries} \cdot \epsilon^{N_{tries}}}{1 - \epsilon^{N_{tries}}} \right).$$

$$\hat{f}_{tra} = \frac{\hat{n}_{tra} \cdot (N_{sam} - \hat{N}_{lost}) + \hat{N}_{tra}^{lost}}{T_{app} \cdot N_{sam}}.$$

Derived-quantities

since the overall number of frames transmitted on-air for a single end-to-end packet exchange equals N_{hop} when no errors occur, and every retry uses an additional slotframe, an estimate of the average transmission latency (that, for request-response pairs, coincides with the round-trip time) can be obtained from n_tra and d_min as

$$\hat{\mu}_{d} = d_{min} + \left(\frac{1}{2} + \hat{n}_{tra} - N_{hop}\right) \cdot T_{sframe}$$

Performance analysis for Single-hop

Measured and theoretical CDFs of *d* (channel hopping enabled).

Measured and theoretical CDFs of *d* (channel hopping disabled).

Single Hop

Experimental results and estimated parameters; channel hopping disabled and enabled

	M	harmen		. / matles	M	and laters	land land	Petin	ated fail	o	Committed to	a must have satel
	MIC	asured	counter 6T	BT ALLOS	Meas	ured latens	cies (ms)	Estim	ated fail	ure rate	Computed tw	o-way loss rati
Exp.	NL	N ₀	PL	P_0	dmin	μ_d	dmax	έp	μ_r	₹D	$P_{L,P}^{*}$	$P_{L,D}^{\prime}$
$\mathcal{I}_{\emptyset}^{(1)}$	0	2286	0.0	0.794	466	1966.00	10723	0.109	0.121	0.108	8.03×10^{-16}	7.02×10^{-16}
$\mathcal{I}_{\emptyset}^{(2)}$	0	2189	0.0	0.760	464	2059.09	11587	0.128	0.145	0.127	1.06×10^{-14}	8.60×10^{-15}
$I_{6}^{(1)}$	0	1901	0.0	0.660	460	2373.00	11872	0.188	0.224	0.183	4.69×10^{-12}	3.08×10^{-12}
$I_{6}^{(2)}$	0	1682	0.0	0.584	464	2723.74	14756	0.236	0.309	0.236	1.82×10^{-10}	1.88×10^{-10}
$I_{6,6}^{(1)}$	0	1092	0.0	0.379	461	3909.81	19755	0.384	0.604	0.376	4.51×10^{-07}	3.25×10^{-07}
$\mathcal{I}_{6,6}^{(2)}$	0	1318	0.0	0.458	466	3399.57	18553	0.324	0.476	0.323	2.88×10^{-08}	2.75×10^{-08}
$\mathcal{I}_{0}^{(+)}$	• 0	4475	0.0	0.777	464	2012.55	11587	0.119	0.133	0.118	3.05×10^{-15}	2.69×10^{-15}
$I_{6}^{(+)}$.	. 0	3583	0.0	0.622	460	2548.37	14756	0.211	0.267	0.211	3.16×10^{-11}	3.01×10^{-11}
$I_{6,6}^{(+)}$.	0	2410	0.0	0.418	461	3654.69	19755	0.353	0.541	0.351	1.17×10^{-07}	1.06×10^{-07}
Exp.	NL	N_0	\hat{P}_{L}^{T}	\hat{P}_{0}^{T}	el hop d _{min}	ping enal μ_d	bled (also d_{max}	$\hat{\epsilon}_P$	in Fi μ,	g. 5.3) <i>è</i> D	$P_{L,P}^T$	$P_{L,D}^T$
$\mathcal{I}_{\theta}^{(1)}$	• 0	2465	0.0	0.856	1937	3278.97	9197	0.075	0.082	0.076	1.94×10^{-18}	2.44×10^{-18}
$I_{1}^{(1)}$	0	2133	0.0	0.741	1945	3613.18	14003	0.139	0.163	0.140	4.07×10^{-14}	4.40×10^{-14}
$I_1^{(2)}$	0	2320	0.0	0.806	1943	3409.05	11278	0.102	0.113	0.101	2.96×10^{-16}	2.51×10^{-16}
$I_{5}^{(1)}$	0	2481	0.0	0.861	1941	3263.55	10667	0.072	0.077	0.072	1.01×10^{-18}	1.00×10^{-18}
	0	2109	0.0	0.732	1940	3621.55	12681	0.144	0.166	0.143	7.04×10^{-14}	$5.80 imes 10^{-14}$
$I_{1,1}^{(1)}$												
$\mathcal{I}_{1,1}^{(1)}$ $\mathcal{I}_{1,5}^{(1)}$	0	1926	0.0	0.669	1940	3859.07	12332	0.182	0.225	0.184	2.96×10^{-12}	3.36×10^{-12}
$\mathcal{I}_{1,1}^{(1)}$ $\mathcal{I}_{1,5}^{(1)}$ $\mathcal{I}_{1,5}^{(2)}$	0	1926 2149	0.0 0.0	0.669 0.746	1940 1938	3859.07 3575.46	12332 11289	0.182 0.136	0.225 0.155	0.184 0.134	$\begin{array}{l} 2.96 \times 10^{-12} \\ 2.80 \times 10^{-14} \end{array}$	3.36×10^{-12} 2.28×10^{-14}
$\mathcal{I}_{1,1}^{(1)}$ $\mathcal{I}_{1,5}^{(1)}$ $\mathcal{I}_{1,5}^{(2)}$ $\mathcal{I}_{1,5,9}^{(1)}$	0	1926 2149 1524	0.0 0.0 0.0	0.669 0.746 0.529	1940 1938 1940	3859.07 3575.46 4438.65	12332 11289 16942	0.182 0.136 0.273	0.225 0.155 0.368	0.184 0.134 0.269	$\begin{array}{l} 2.96 \times 10^{-12} \\ 2.80 \times 10^{-14} \\ 1.86 \times 10^{-09} \end{array}$	3.36×10^{-12} 2.28×10^{-14} 1.53×10^{-09}
$\mathcal{I}^{(1)}_{1,1}$ $\mathcal{I}^{(1)}_{1,5}$ $\mathcal{I}^{(2)}_{1,5,9}$ $\mathcal{I}^{(2)}_{1,5,9}$	0 0 0	1926 2149 1524 1848	0.0 0.0 0.0 0.0	0.669 0.746 0.529 0.642	1940 1938 1940 1944	3859.07 3575.46 4438.65 3944.73	12332 11289 16942 12761	0.182 0.136 0.273 0.199	0.225 0.155 0.368 0.245	0.184 0.134 0.269 0.197	$\begin{array}{l} 2.96\times10^{-12}\\ 2.80\times10^{-14}\\ 1.86\times10^{-09}\\ 1.21\times10^{-11} \end{array}$	$\begin{array}{c} 3.36\times10^{-12}\\ 2.28\times10^{-14}\\ 1.53\times10^{-09}\\ 1.02\times10^{-11} \end{array}$
$\mathcal{I}_{1,1}^{(1)}$ $\mathcal{I}_{1,5}^{(1)}$ $\mathcal{I}_{1,5}^{(2)}$ $\mathcal{I}_{1,5,9}^{(2)}$ $\mathcal{I}_{1,5,9}^{(2)}$ $\mathcal{I}_{1,5,13}^{(2)}$	0 0 0	1926 2149 1524 1848 1952	0.0 0.0 0.0 0.0 0.0	0.669 0.746 0.529 0.642 0.678	1940 1938 1940 1944 1941	3859.07 3575.46 4438.65 3944.73 3810.58	12332 11289 16942 12761 15999	0.182 0.136 0.273 0.199 0.177	0.225 0.155 0.368 0.245 0.213	0.184 0.134 0.269 0.197 0.175	$\begin{array}{c} 2.96\times10^{-12}\\ 2.80\times10^{-14}\\ 1.86\times10^{-09}\\ 1.21\times10^{-11}\\ 1.81\times10^{-12}\end{array}$	$\begin{array}{c} 3.36\times10^{-12}\\ 2.28\times10^{-14}\\ 1.53\times10^{-09}\\ 1.02\times10^{-11}\\ 1.61\times10^{-12}\end{array}$
$T_{1,1}^{(1)}$ $T_{1,5}^{(1)}$ $T_{1,5}^{(2)}$ $T_{1,5,9}^{(2)}$ $T_{1,5,9}^{(2)}$ $T_{1,5,9}^{(2)}$ $T_{1,5,9,13}^{(1)}$	0 0 0 0 0	1926 2149 1524 1848 1952 1659	0.0 0.0 0.0 0.0 0.0 0.0	0.669 0.746 0.529 0.642 0.678 0.576	1940 1938 1940 1944 1941 1942	3859.07 3575.46 4438.65 3944.73 3810.58 4277.65	12332 11289 16942 12761 15999 17288	0.182 0.136 0.273 0.199 0.177 0.241	0.225 0.155 0.368 0.245 0.213 0.328	0.184 0.134 0.269 0.197 0.175 0.247	$\begin{array}{l} 2.96\times10^{-12}\\ 2.80\times10^{-14}\\ 1.86\times10^{-09}\\ 1.21\times10^{-11}\\ 1.81\times10^{-12}\\ 2.59\times10^{-10}\end{array}$	$\begin{array}{c} 3.36\times10^{-12}\\ 2.28\times10^{-14}\\ 1.53\times10^{-09}\\ 1.02\times10^{-11}\\ 1.61\times10^{-12}\\ 3.85\times10^{-10}\end{array}$
$\mathcal{I}_{1,1}^{(1)}$ $\mathcal{I}_{1,5}^{(1)}$ $\mathcal{I}_{1,5}^{(2)}$ $\mathcal{I}_{1,5,9}^{(1)}$ $\mathcal{I}_{1,5,9}^{(1)}$ $\mathcal{I}_{1,5,9,13}^{(1)}$ $\mathcal{I}_{1,5,9,13}^{(2)}$	0 0 0 0 0	1926 2149 1524 1848 1952 1659 1768	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.669 0.746 0.529 0.642 0.678 0.576 0.576 0.614	1940 1938 1940 1944 1941 1942 1943	3859.07 3575.46 4438.65 3944.73 3810.58 4277.65 4076.80	12332 11289 16942 12761 15999 17288 13649	0.182 0.136 0.273 0.199 0.177 0.241 0.216	0.225 0.155 0.368 0.245 0.213 0.328 0.278	0.184 0.134 0.269 0.197 0.175 0.247 0.218	$\begin{array}{l} 2.96\times10^{-12}\\ 2.80\times10^{-14}\\ 1.86\times10^{-09}\\ 1.21\times10^{-11}\\ 1.81\times10^{-12}\\ 2.59\times10^{-10}\\ 4.66\times10^{-11} \end{array}$	$\begin{array}{c} 3.36\times10^{-12}\\ 2.28\times10^{-14}\\ 1.53\times10^{-09}\\ 1.02\times10^{-11}\\ 1.61\times10^{-12}\\ 3.85\times10^{-10}\\ 5.06\times10^{-13} \end{array}$

Practical application contexts

Influence of N_{slot} and N_{tries} on reliability, power consumption, and latency, evaluated using the proposed network model ($\epsilon = 0.4$, $N_{tries} = 16$ for Plot 1, $N_{slot} = 101$ for Plot 2 and Plot 3).

Practical application contexts

Influence of N_{slot} and N_{tries} on reliability, power consumption, and latency, evaluated using the proposed network model ($\epsilon = 0.13$, $N_{tries} = 16$ for Plot 4, $N_{slot} = 101$ for Plot 5 and Plot 6). Effects of moving working points—marked with solid red circles (•)—away from the default configuration—marked with emptyred circles (°)—are suitably labelled.

TSCH predictor

Algorithm 1: Simulation logic at the TSCH event $FDP \leftarrow (1 - \epsilon)$ $ACK \leftarrow (1 - \epsilon_{ACK})$ while TRUE do if random.uniform $(0,1) \leq FDP$ then DATA frame arrived in subsequent node if random.uniform $(0,1) \leq ACK$ then ACK frame arrived to source node else ACK frame did not arrive at source node end if else ACK frame sent but did not arrive at the following node end if end while

TSCH predictor web Interfaces

TSCH predictor Home Simulator Outputs Configuration

umber of SlotFrame [#]		•
101	09	
(xT Retries [#]		
16		
fotal number of Pings		
721		
Period [s]		THAMA)
120		
Start Simulation Prediction is finished		
Download full ping report	Analyze ping report	
NODE STATS ID: 0 RX_ACK: 221312 uJ Power_listen: 0.00	0 TX_ACK: 832 RX: 0 L 00000 Power: 2.557929	ISTEN: 0 f_TX: 34.618585 f_RX: 0.000000 f_listen: 0.000000 ENERGY: 0 uW/s
NODE STATS ID: 1 RX_ACK: 1747:572816 ENERGY: 6253	720 TX_ACK: 830 RX: 1 068 uJ Power_listen: 66	12 LISTEN: 42000 f_TX: 34.535368 f_RX: 34.618585 f_listen: 1.990291 Power: 72.273093 uW/s

NODE STATS ID: 2 RX_ACK: 720 TX_ACK: 0 RX: 110 LISTEN: 42002 f_TX: 0.000000 f_RX: 34.535368 f_listen: 1747.656033 ENERGY: 6031996 uJ Power_listen: 66.993481 Power: 69.717938 uW/s